\(\int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx\) [226]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 120 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\frac {7 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {7 a^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {a^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}} \]

[Out]

7/4*a^(3/2)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+7/4*a^2*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*se
c(d*x+c))^(1/2)+1/2*a^2*sec(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3899, 21, 3888, 3886, 221} \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\frac {7 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{4 d}+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}+\frac {7 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d \sqrt {a \sec (c+d x)+a}} \]

[In]

Int[Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(7*a^(3/2)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(4*d) + (7*a^2*Sec[c + d*x]^(3/2)*Sin[c +
 d*x])/(4*d*Sqrt[a + a*Sec[c + d*x]]) + (a^2*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(2*d*Sqrt[a + a*Sec[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 3888

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*b*d*
Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/(f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Dist[2*a*d*((n - 1)/(b*(2
*n - 1))), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a
^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]

Rule 3899

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Dist[b/(m + n - 1), Int[
(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n*(b*(m + 2*n - 1) + a*(3*m + 2*n - 4)*Csc[e + f*x]), x], x] /;
FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] && NeQ[m + n - 1, 0] && IntegerQ[2*m]

Rubi steps \begin{align*} \text {integral}& = \frac {a^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}}+\frac {1}{2} a \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (\frac {7 a}{2}+\frac {7}{2} a \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx \\ & = \frac {a^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}}+\frac {1}{4} (7 a) \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \, dx \\ & = \frac {7 a^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {a^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}}+\frac {1}{8} (7 a) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx \\ & = \frac {7 a^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {a^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}}-\frac {(7 a) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d} \\ & = \frac {7 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {7 a^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {a^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.49 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.92 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\frac {a^2 \left (7 \arcsin \left (\sqrt {1-\sec (c+d x)}\right )+2 \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+7 \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}\right ) \tan (c+d x)}{4 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(a^2*(7*ArcSin[Sqrt[1 - Sec[c + d*x]]] + 2*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2) + 7*Sqrt[-((-1 + Sec[c +
d*x])*Sec[c + d*x])])*Tan[c + d*x])/(4*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(205\) vs. \(2(100)=200\).

Time = 1.57 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.72

method result size
default \(\frac {a \left (14 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )-7 \cos \left (d x +c \right )^{2} \arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-7 \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+4 \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sec \left (d x +c \right )^{\frac {3}{2}}}{8 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(206\)

[In]

int(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/8/d*a*(14*(-1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*cos(d*x+c)-7*cos(d*x+c)^2*arctan(1/2*(-cos(d*x+c)+sin(d*x+c)-
1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))-7*arctan(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d*
x+c)+1))^(1/2))*cos(d*x+c)^2+4*sin(d*x+c)*(-1/(cos(d*x+c)+1))^(1/2))*(a*(1+sec(d*x+c)))^(1/2)*sec(d*x+c)^(3/2)
/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 370, normalized size of antiderivative = 3.08 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\left [\frac {7 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (7 \, a \cos \left (d x + c\right ) + 2 \, a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{16 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac {7 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) + \frac {2 \, {\left (7 \, a \cos \left (d x + c\right ) + 2 \, a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{8 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \]

[In]

integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/16*(7*(a*cos(d*x + c)^2 + a*cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x +
 c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)
/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(7*a*cos(d*x + c) + 2*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d
*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^2 + d*cos(d*x + c)), 1/8*(7*(a*cos(d*x + c)^2 + a*cos(d*x + c))*sq
rt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x +
c)^2 - a*cos(d*x + c) - 2*a)) + 2*(7*a*cos(d*x + c) + 2*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c
)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^2 + d*cos(d*x + c))]

Sympy [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**(3/2)*(a+a*sec(d*x+c))**(3/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2244 vs. \(2 (100) = 200\).

Time = 0.45 (sec) , antiderivative size = 2244, normalized size of antiderivative = 18.70 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\text {Too large to display} \]

[In]

integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

-1/16*(56*sqrt(2)*a*cos(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x +
 3/2*c), cos(3/2*d*x + 3/2*c))) - 24*sqrt(2)*a*cos(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*si
n(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 12*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 28*sqrt(2)*a*
sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 4*(3*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 7*sqrt(2)
*a*sin(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 3*sqrt(2)*a*sin(5/3*arctan2(sin(3/2*d*x + 3/
2*c), cos(3/2*d*x + 3/2*c))) - 7*sqrt(2)*a*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*cos(8
/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 8*(3*sqrt(2)*a*sin(3/2*d*x + 3/2*c) - 7*sqrt(2)*a*si
n(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x
+ 3/2*c))) - 7*(a*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*cos(4/3*arctan2(sin(3/2
*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + a*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4
*a*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*
d*x + 3/2*c))) + 4*a*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*(2*a*cos(4/3*arctan2(s
in(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + a)*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))
+ 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + a)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/
2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*
cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c),
 cos(3/2*d*x + 3/2*c))) + 2) + 7*(a*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*cos(4
/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + a*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*
x + 3/2*c)))^2 + 4*a*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x
+ 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*(2*a
*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + a)*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3
/2*d*x + 3/2*c))) + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + a)*log(2*cos(1/3*arctan
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c
)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin
(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - 7*(a*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*
c)))^2 + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + a*sin(8/3*arctan2(sin(3/2*d*x +
3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(4/3*ar
ctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3
/2*c)))^2 + 2*(2*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + a)*cos(8/3*arctan2(sin(3/2*d
*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + a)*lo
g(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), c
os(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*s
in(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 7*(a*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c),
cos(3/2*d*x + 3/2*c)))^2 + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + a*sin(8/3*arct
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3
/2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c
), cos(3/2*d*x + 3/2*c)))^2 + 2*(2*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + a)*cos(8/3
*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x
+ 3/2*c))) + a)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3
/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*
c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 4*(3*sqrt(2)*a*cos(3/2*d*
x + 3/2*c) + 7*sqrt(2)*a*cos(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 3*sqrt(2)*a*cos(5/3*ar
ctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 7*sqrt(2)*a*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2
*d*x + 3/2*c))))*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 28*(2*sqrt(2)*a*cos(4/3*arctan
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sqrt(2)*a)*sin(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x
+ 3/2*c))) + 12*(2*sqrt(2)*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sqrt(2)*a)*sin(5/3
*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 8*(3*sqrt(2)*a*cos(3/2*d*x + 3/2*c) - 7*sqrt(2)*a*cos(
1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x +
3/2*c))))*sqrt(a)/((2*(2*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1)*cos(8/3*arctan2(sin
(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4
*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/
2*d*x + 3/2*c)))^2 + 4*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(4/3*arctan2(sin(3/2*d*
x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*cos(
4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1)*d)

Giac [F]

\[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\int {\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

[In]

int((a + a/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(3/2),x)

[Out]

int((a + a/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(3/2), x)